WNE Linear Algebra Final Exam Series A

9 February 2017

Please use separate sheets for different problems. Please provide the following data on each sheet

- name, surname and your student number,
- number of your group,
- number of the corresponding problem.

Problem 1.

Let $v_1 = (1, 1, 1, 1), v_2 = (2, 1, 2, 3), v_3 = (1, 0, 1, t)$ be vectors in \mathbb{R}^4 .

- a) for which $t \in \mathbb{R}$ vectors $v_1, v_2, v_3 \in \mathbb{R}^4$ are linearly independent?
- b) find a system of linear equations which set of solutions is equal to $lin(v_1, v_2, v_3)$ for t = 3.

Problem 2.

Let $W \subset \mathbb{R}^5$ be a subspace given by the homogeneous system of linear equations

	$\int x_1$	+	x_2	+	$2x_3$	—	x_4	+	$2x_5 = 0$
ł	x_1	+	x_2	+	$3x_3$	+	x_4	+	$3x_5 = 0$
	$2x_1$	+	$3x_2$	+	$5x_3$	—	$3x_4$	+	$3x_5 = 0$

- a) find a basis \mathcal{A} of the subspace W and the dimension of W,
- b) complete the basis \mathcal{A} to a basis \mathcal{B} of \mathbb{R}^5 and find coordinates of $w = (1, 0, 0, 0, 0) \in$ \mathbb{R}^5 relative to \mathcal{B} .

Problem 3.

Let $\varphi \colon \mathbb{R}^3 \to \mathbb{R}^3$ be a linear transformation given by the formula

$$\varphi((x_1, x_2, x_3)) = (-4x_1 + x_2 + 2x_3, tx_2, -x_1 + x_2 - x_3)$$

- a) for t = -3 find matrix $C \in M(3 \times 3; \mathbb{R})$ such that matrix $C^{-1}M(\varphi)_{st}^{st}C$ is diagonal,
- b) find all $t \in \mathbb{R}$ for which there exist a basis \mathcal{A} of \mathbb{R}^3 such that $M(\varphi)_{\mathcal{A}}^{\mathcal{A}} =$ $\begin{bmatrix} p & 0 & 0 \end{bmatrix}$

$$\begin{bmatrix} 0 & p & 0 \\ 0 & 0 & q \end{bmatrix}, \text{ where } p, q \in \mathbb{R}.$$

Problem 4.

Let $\mathcal{A} = ((1,1,0), (0,0,1), (2,3,0))$ be an ordered basis of \mathbb{R}^3 . The linear transformation $\psi \colon \mathbb{R}^3 \longrightarrow \mathbb{R}^3$ is given by the matrix $M(\psi)^{\mathcal{A}}_{\mathcal{A}} = \begin{bmatrix} 1 & 1 & 0 \\ -1 & 0 & 1 \\ 0 & -1 & 0 \end{bmatrix}$.

a) find $M(\psi)^{st}_{\mathcal{A}}$,

b) find formula of $\psi \circ \psi$.

Problem 5.

Let $V = \{(x_1, x_2, x_3) \in \mathbb{R}^3 \mid x_1 - x_2 + 2x_3 = 0\}$ be a subspace of \mathbb{R}^3 . a) find an orthonormal basis of V^{\perp} ,

b) compute the orthogonal projection of w = (3, 0, 0) onto V.

Problem 6.

 Let

$$A^{-1} = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 1 \\ 2 & 3 & 3 \end{bmatrix} \quad B = \begin{bmatrix} 1 & 0 & -1 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}.$$

- a) compute matrix AB,
- b) compute $\det(B^4 A^{-1} + B^5)$.

Problem 7.

Let $L \subset \mathbb{R}^3$ be an affine line given by the system of linear equations

$$\begin{cases} x_1 - x_3 = 2\\ 2x_1 - x_2 = 3 \end{cases}$$

- a) find a parametrization of L,
- b) find an equation of the affine plane perpendicular to L passing through (1, 0, 0).

Problem 8.

Consider the following linear programming problem $-4x_1 - 3x_2 + 5x_3 - 2x_5 \rightarrow \min$ in the standard form with constraints

 $\begin{cases} x_1 + x_2 - x_3 + x_4 &= 3\\ 2x_1 + x_2 - 2x_3 &+ x_5 &= 4 \end{cases} \text{ and } x_i \ge 0 \text{ for } i = 1, \dots, 5$

- a) which of the sets $\mathcal{B}_1 = \{1,3\}, \mathcal{B}_2 = \{2,3\}, \mathcal{B}_3 = \{4,5\}$ are basic? Which basic sets are feasible?
- b) solve the linear programming problem using simplex method.